
Data Virtualization in WPF and beyond 

Introduction 

How do you show a 100,000-item list in WPF? Anyone who tried to deal with such a volume of 

information in a WPF client knows that  it takes some careful development in order to make it work well.   

Getting the data from where it is (a remote service, a database) to where it needs to be (your client) is 

one part of the problem. Getting WPF controls to display it efficiently is another part. This is especially 

true for controls deriving from ItemsControl like ListView and the newly released DataGrid, since 

these controls are likely to be served large data sets. 

One can question the usefulness of displaying hundreds of thousands of rows in a ListView. There is, 

however, always one good reason: the customer requests it. And the customer is king, even if the 

reasoning behind the request is slightly flawed. So, faced with this challenge, what can we do as WPF 

developers to make both the coding and user experience as painless as possible? 

As of .NET 3.5SP1, this is what you can do today to improve performance in ItemsControl and 

derivatives: 

- Make the number of UI elements to be created proportional to what is visible on screen using 

VirtualizingStackPanel.IsVirtualizing="True". 

- Have the framework recycle item containers instead of (re)creating them each time, by setting 

VirtualizingStackPanel.VirtualizationMode="Recycling". 

- Defer scrolling while the scrollbar is in action by using 

ScrollViewer.IsDeferredScrollingEnabled="True".  Note that this only improves 

perceived performance, by waiting until the user releases the scrollbar thumb to update the 

content. However, we will see that it also improves actual performance in the scenarios 

described below. 

All these things take care of the user interface side of the equation. Sadly, nothing in WPF takes care of 

the data side.  Data virtualization is on the roadmap for a future release of WPF, but will not be available 

in the upcoming .NET 4.0, according to Samantha MSFT 

(http://www.codeplex.com/wpf/Thread/View.aspx?ThreadId=40531). 

 All is not lost, however. I will show you various ways to have your favorite ItemsControl scroll 

through hundreds of thousands, even millions of items with little effort. Of course, every solution has a 

price tag, but for most situations it will be acceptable. Promised! 

My “solutions” for data virtualization in WPF relies on two key insights and two usage assumptions. The 

two key insights are: 

http://www.codeplex.com/wpf/Thread/View.aspx?ThreadId=40531


1. It is possible to automatically construct for an instance of any type T an equivalent lightweight 

object which, at least for WPF’s binding engine, is indistinguishable from T in most binding 

scenarios involving binding to properties of T. 

2. ItemsControl’s access patterns for its item source are highly predictable and need at any time 

only a fraction of the entire data set. The size of this data set is proportional to the number of 

visible rows, not to the total number of rows in the data set. 

Two approaches are derived from these two key insights: the item virtualization approach, where 

individual objects are loaded on demand, and the collection virtualization approach, where the entire 

data set is virtualized. These two approaches virtually (pun intended) split this article in 2 parts. 

 The usage assumptions are: 

1. In the presence of a large number of items, the users will not look at each and every one of 

them at the same time. 

2. Scenarios involving a large number of items are predominantly read-only. If there’s any editing 

to be done, it will not take place in the ItemsControl holding the large data set. 

If usage assumption 1 is valid, we only need to load what the user needs to see. This assumption is 

already exploited by VirtualizingStackPanel’s IsVirtualizing and VirtualizationMode 

modes, but it’s valid for the data side of the equation as well. Therefore, we can concentrate on 

techniques that load small amounts of data efficiently. 

If usage assumption 2 is valid, we can ignore scenarios where users start editing large data sets in-place. 

In-place editing with all the bells and whistles (cancellable, transaction safe) has its own set of problems 

and solutions that is outside the scope of this article. 

Scenario 0: Setting the stage 

To set the stage for what is to come, consider this simple type: 

    class Person 

    { 

        public int Id { get; set; } 

        public string FirstName { get; set; } 

        public string LastName { get; set; } 

 

        public Person(int id) 

        { 

            Id = id; 

            FirstName = String.Format("FirstName{0}", id); 

            LastName = String.Format("LastName{0}", id); 

        } 

    } 

 



Suppose millions of instances of that type exist somewhere, and are obtained through some loading 

mechanism.  This mechanism will be given some unique id, and returns the corresponding instance of 

Person.  

The accompanying code (http://home.scarlet.be/thehive/DataVirtualizationArticleCode.zip) has a demo 

program which constructs lists of Person instances using different scenarios, and shows them in an 

ordinary ListView.  

The relevant markup for the ListView in the demo program is defined as follows: 

<ListView Name="TheView" VirtualizingStackPanel.IsVirtualizing="True" 

VirtualizingStackPanel.VirtualizationMode="Recycling" 

ScrollViewer.IsDeferredScrollingEnabled="True"> 

    <ListView.View> 

        <GridView> 

            <GridViewColumn Width="60" DisplayMemberBinding="{Binding 

Id}" Header="Id" /> 

            <GridViewColumn Width="120" DisplayMemberBinding="{Binding 

FirstName}" Header="First Name" /> 

            <GridViewColumn Width="120" DisplayMemberBinding="{Binding 

LastName}" Header="Last Name" /> 

        </GridView> 

    </ListView.View> 

</ListView> 

 

Note that the ListView already implements all the optimizations outlined in the introduction. For the 

remainder of this article, this markup will not change. I.e. all the solutions presented here will work with 

the existing markup transparently. 

Now we want to simulate the fact that instances of Person may be expensive to construct. For 

example, they need to be obtained through some remote service (slow), or they may already be present 

in some local cache (fast). Therefore, accessing an instance has a significant but unpredictable overhead.  

Any data virtualization solution should take this into account. 

To simulate this unpredictable overhead, the demo program introduces a property called 

m_CreationOverhead, and implements the loading mechanism for Person objects is as follows: 

private Person LoadPerson(int id) 

{ 

    Thread.Sleep(Math.Max(1, m_Random.Next(m_CreationOverhead)));    // 

simulate expensive operation 

    return new Person(id); 

} 

 

Note the Thread.Sleep, which will introduce a random delay between 1 and m_CreationOverhead 

milliseconds before a new instance is returned, making calls to create new instances expensive at will, 

but unpredictable.  

http://home.scarlet.be/thehive/DataVirtualizationArticleCode.zip


Suppose we want to populate the view with 100,000 instances of Person. The obvious way is to call the 

following function with itemCount set to 100,000: 

        private void Scenario0(int itemCount) 

        { 

            var list = new List<Person>(itemCount); 

            for (int i = 0; i < itemCount; ++i) 

                list.Add(LoadPerson(i)); 

            TheView.ItemsSource = list; 

        } 

 

You can try this if you want, by running the demo program and clicking on the “Scenario 0” button. 

Please be patient.  The demo program will appear to hang for a bit less than 2 minutes before you will 

this result:  

 

Since each object needs at least 1 millisecond to instantiate, by the time all 100,000 instances are 

created, at least 1 minute and 40 seconds will have elapsed. And of course, all your live instances will be 

in memory. Let’s see if we can improve on this horrible performance. 

Introducing DataRefBase<T> 

Instead of loading each and every one of those 100,000 instances in memory, we should find a way to 

delay the creation of Person instances until the time the WPF binding engine really needs them. This 

should make the list construction faster, since only about 11 out of the 100,000 Person instances are 



actually visible in the previous screenshot. Therefore only about that much instancing is needed. All the 

rest is overhead. 

It’s easy enough to develop a custom type, say PersonRef, with exactly the same properties as 

Person, but which delays loading the corresponding Person instance until a property value is really 

needed. As far as WPF data binding is concerned, different types are OK since matching property names 

are sufficient to make the existing markup work. 

But this solution is fragile (because PersonRef needs to evolve together with Person) and not 

reusable (because it applies to the Person type only). We can solve the fragility problem by 

“programming to interfaces”, but this may not be feasible for pre-existing types. And it doesn’t make the 

solution more reusable. 

Meet our new best friend, ICustomTypeDescriptor.  This is an interface that supplies dynamic 

custom type information for an object. The WPF binding engine checks if an object implements this 

interface and if so uses it to get at the property definitions and bind to them.  This is the source of our 

key insight #1: we can use this interface to implement a type that mimics the properties of another type. 

Instead of providing dynamic custom type information, we’ll provide static custom type information for 

an existing type T.  Using the same interface, we can intercept property getters and setters and load the 

“real” instance as soon as these are called. 

More specifically, we define a generic base type as follows: 

public abstract class DataRefBase<T> :  

ICustomTypeDescriptor,  

INotifyPropertyChanged where T : class 

{ 

 … 

         protected abstract T Data { get; } 

 … 

 // implementation of ICustomTypeDescriptor  

 … 

 // implementation of INotifyPropertyChanged 

 … 

} 

 

The generic parameter T must be a reference type, because we need null references to express the fact 

that an instance is not (yet) available. We can’t do this with value types, hence the T : class 

constraint. 

The type is abstract, because the exact way an instance of T is obtained is of no concern to 

DataRefBase<T> to do its job: the abstract Data property will be called when an instance is required, 

and it’s up to the derived classes to implement it. Various implementations will be discussed in the 

scenarios below.  

Apart from the implementation of ICustomTypeDescriptor , the type also implements 

INotifyPropertyChanged: as we shall see, not only is this extremely useful but the implementation 



is a no-brainer.  As a nice side effect, our substitute type will always implement 

INotifyPropertyChanged, even if our generic parameter T does not. 

 ICustomTypeDescriptor defines 12 methods. This sounds like a lot of work to implement, but 

fortunately, 10 of these methods are either trivial to write, or can be delegated to the corresponding 

method of the static TypeDescriptor helper class. The following table will help you to nail down the 

implementation of these 10 methods. Refer to the code accompanying this article for the specifics. 

Method Implementation 
AttributeCollection 

GetAttributes() 

return 

TypeDescriptor.GetAttributes(typeof(T)); 

string GetClassName() return 

TypeDescriptor.GetClassName(typeof(T)); 

string GetComponentName() return 

TypeDescriptor.GetComponentName(this); 

TypeConverter GetConverter() return 

TypeDescriptor.GetConverter(typeof(T)); 

EventDescriptor GetDefaultEvent() return 

TypeDescriptor.GetDefaultEvent(typeof(T)); 

PropertyDescriptor 

GetDefaultProperty() 

return 

TypeDescriptor.GetDefaultProperty(typeof(T

)); 

object GetEditor(Type 

editorBaseType) 

return TypeDescriptor.GetEditor(typeof(T), 

editorBaseType); 

EventDescriptorCollection 

GetEvents(Attribute[] attributes) 

return TypeDescriptor.GetEvents(typeof(T), 

attributes); 

EventDescriptorCollection 

GetEvents() 

return 

TypeDescriptor.GetEvents(typeof(T)); 

object 

GetPropertyOwner(PropertyDescript

or pd) 

return this; 

 

What’s left to implement are 2 overloaded variants of GetProperties: 

PropertyDescriptorCollection GetProperties(); 

PropertyDescriptorCollection GetProperties(Attribute[] attributes); 

 

This is where it gets interesting. Both these methods return a collection of PropertyDescriptors. The 

latter is an abstract class, which is perfect since we need to implement our own anyway. The story is 

much the same as with ICustomTypeDescriptor: most of PropertyDescriptor ‘s implementation  

is trivial and won’t be shown here. The 2 interesting methods are those called when a property value is 

obtained or set. These methods just delegate to private DataRefBase<T> methods: 

private class DataRefPropertyDescriptor : PropertyDescriptor 

{ 

    … 

 

    public override object GetValue(object component) 

    { 



        return 

((DataRefBase<T>)component).GetValue(m_PropertyDescriptor); 

    } 

  

 

    public override void SetValue(object component, object value) 

    { 

        ((DataRefBase<T>)component).SetValue(this, value); 

    } 

 

    … 

 

} 

 

And the corresponding methods of DataRefBase<T> are: 

private void SetValue(DataRefPropertyDescriptor propertyDescriptor, 

object value) 

{ 

    var data = Data; 

    if (data != null) 

    { 

        propertyDescriptor.SetValue(data, value); 

        NotifyPropertyChanged(propertyDescriptor); 

    } 

} 

 

private object GetValue(PropertyDescriptor propertyDescriptor) 

{ 

    var data = Data; 

    if (data != null) 

        return propertyDescriptor.GetValue(data); 

    else 

        return null; 

} 

 

Both methods call our abstract Data property to get an instance. Both check if the instance they got 

back is not null. Do you know why this is needed? (Hint: it has to do with asynchronous calls) If you 

don’t, wait until scenario 3 is discussed below.  

Because all property changes go through SetValue, calling NotifyPropertyChanged is the only 

thing we need to do for the implementation of the INotifyPropertyChanged interface. 

Note that the class has no instance variables and all method implementations are very simple. This 

matches our goal to have a “lightweight” object. The construction and storage of property descriptor 

collections is done in the static constructor and shared among all instances: 

private static readonly IDictionary<PropertyDescriptor, 

PropertyDescriptor> m_PropertyMap; 

internal static readonly PropertyDescriptorCollection 

PropertyDescriptorCollection; 

 

static DataRefBase() 



{ 

    PropertyDescriptorCollection = new 

PropertyDescriptorCollection(null); 

    var propertyDescriptorCollection = 

TypeDescriptor.GetProperties(typeof(T)); 

    m_PropertyMap = new Dictionary<PropertyDescriptor, 

PropertyDescriptor>(propertyDescriptorCollection.Count); 

    foreach (PropertyDescriptor propertyDescriptor in 

propertyDescriptorCollection) 

    { 

        var mappedPropertyDescriptor = new 

DataRefPropertyDescriptor(propertyDescriptor); 

        m_PropertyMap.Add(propertyDescriptor, 

mappedPropertyDescriptor); 

        PropertyDescriptorCollection.Add(mappedPropertyDescriptor); 

    } 

} 

 

The abstract type is now complete: we now have a useful base type from which we can derive concrete 

types start using them in various scenarios. 

Scenario 1: Loading on demand with DataRef<T Id, T> 

Our first concrete type loads an instance of T on demand, and keeps a strong reference to it. The 

implementation is shown here: 

public class DataRef<TId, T> : DataRefBase<T> where T : class 

{ 

    private readonly TId m_Id; 

    private T m_Data; 

 

    private readonly Func<TId, T> Load; 

 

    public DataRef(TId id, Func<TId, T> load) 

    { 

        m_Id = id; 

        Load = load; 

    } 

 

    protected override T Data 

    { 

        get 

        { 

            if (m_Data == null) 

                m_Data = Load(m_Id); 

            return m_Data; 

        } 

    } 

} 

 

Instances are constructed by giving an id, and a load function which knows how to load the type, given 

the id.  



Note the use of the Func<TId, T> delegate. We use delegates instead of another abstract method for 

two reasons. First, delegates enable better decoupling: we don’t have to force the class users to create a 

separate type just to specify the way it is loaded. Second, delegates have a built-in capability for 

asynchronous invocation, which will be useful later. 

We don’t make any assumptions on T other than the fact that it must be a reference type. One thing 

you might do is check if T implements INotifyPropertyChanged. If it does, link it to the 

corresponding event of DataRefBase<T>. This would enable changes made directly to T to be 

propagated to our substitute object. Because I didn’t need it, this isn’t done here. 

For our example, populating the view becomes: 

private void Scenario1(int itemCount) 

{ 

    var list = new List<DataRefBase<Person>>(itemCount); 

 

    for (int i = 1; i <= itemCount; ++i) 

        list.Add(new DataRef<int, Person>(i, LoadPerson)); 

    TheView.ItemsSource = list; 

} 

 

Let’s check how that code performs by clicking the “Scenario 1” button of the demo application. Go 

ahead: try 100,000 items with 1ms creation overhead. Here is what you should see: 

  

Less than half a second to create 100,000 items and only 12 live instances of Person in memory, without 

modifying the ListView markup at all. Not bad.  

DataRef<T>: the price to pay 

What we have done in scenario 1 is pure and simple type substitution. True, our ListView continues to 

work, but that’s because the WPF binding engine binds property names to those advertised by 

ICustomTypeDescriptor.GetProperties() in our substitute type. As long as only properties are 

involved in the binding process, this will work.  

But consider the following data template (assuming local is the namespace where our Person type 

definition lives): 

<DataTemplate DataType="{x:Type local:Person}"> 

<TextBlock Text="{Binding FirstName}" /> 



</DataTemplate> 

 

… and suppose we had the following column definition in our ListView markup: 

<GridViewColumn Width="100" Header="DataTemplate test"> 

    <GridViewColumn.CellTemplate> 

        <DataTemplate> 

            <ContentControl Content="{Binding}" /> 

        </DataTemplate> 

    </GridViewColumn.CellTemplate> 

</GridViewColumn> 

 

In scenario 0, this column would show the instance’s first name. In scenario 1, this would not work. 

Data templates with a specific DataType will not be considered because we’re dealing with a different 

type here. For looking up data templates, WPF’s data binding engine is not smart enough to detect that 

the bound type implements ICustomTypeDescriptor and that the “real” type can be obtained by 

calling ICustomTypeDescriptor.GetClassName. As a result, the match fails and the content shown 

will be return value of DataRef<TId, T>.ToString(), which is ugly. 

There is no solution that takes care of the problem transparently, but we can work around the problem 

by providing a property that returns the actual instance. Note that DataRefBase<T> already has such a 

property: Data. However, we can’t use it because (1) it is protected, and (2) you will confuse WPF’s 

binding engine by trying to bind to an actual property on an object implementing 

ICustomTypeDescriptor. If you make the Data property public and try to bind to it, WPF will throw 

an “ambiguous match” exception. 

What we can do, is expose the property through ICustomTypeDescriptor.  We can do this by adding 

the following lines in DataRefBase<T>’s static constructor: 

// create an artificial read-only property for the referenced instance 

var instancePropertyDescriptor = 

TypeDescriptor.CreateProperty(typeof(DataRefBase<T>), "__DATA__", 

typeof(T)); 

var mappedInstancePropertyDescriptor = new 

InstancePropertyDescriptor(instancePropertyDescriptor); 

m_PropertyMap.Add(instancePropertyDescriptor, 

mappedInstancePropertyDescriptor); 

PropertyDescriptorCollection.Add(mappedInstancePropertyDescriptor); 

 

We need to be careful, however, not to have a naming conflict between the property we’re exposing 

and the existing properties of T. Sadly, there’s no way to guarantee this. Here, I’ve named the property 

__DATA__, which violates enough naming conventions to make it an unlikely naming conflict. 

The InstancePropertyDescriptor is just a specialization of DataRefPropertyDescriptor, 

exposing the instance as read-only: 



private class InstancePropertyDescriptor : DataRefPropertyDescriptor 

{ 

    public InstancePropertyDescriptor(PropertyDescriptor 

propertyDescriptor) 

        : base(propertyDescriptor) 

    { 

    } 

 

    … 

 

    public override object GetValue(object component) 

    { 

        return ((DataRefBase<T>)component).Data; 

    } 

 

    public override Type PropertyType 

    { 

        get { return typeof(T); } 

    } 

 

    … 

} 

 

The cell template markup becomes: 

<GridViewColumn.CellTemplate> 

    <DataTemplate> 

        <ContentControl Content="{Binding __DATA__}" /> 

    </DataTemplate> 

</GridViewColumn.CellTemplate> 

 

Now your data template will be invoked correctly. Not a transparent solution, and not even a pretty 

one, but it works. 

Another shortcoming of our solution in scenario 1 becomes apparent when you start to scroll or click on 

a header to sort the ListView. If you scroll down to items that haven’t been loaded yet, you will see 

the “live instances” count increase. Scroll through the entire list, and all 100,000 instances will be 

loaded. 

Sorting is even more dramatic. Sorting is a process that needs all the instances. So by a single click on a 

header, all 100,000 items will be loaded.  

After sorting is complete or the entire list has been paged through, all the 100,000 instances remain in 

memory, even though the same number of rows is visible. Let’s see what we can do about that. 

Scenario 2: Loading weak references WeakDataRef<TId, T> 

Instead of holding a strong reference to an instance, we can use a weak reference. The code is as 

follows: 



public class WeakDataRef<TId,T>: DataRefBase<T> where T: class 

{ 

    private readonly TId m_Id; 

    private readonly WeakReference m_Data = new WeakReference(null); 

    private readonly Func<TId, T> Load; 

 

    public WeakDataRef(TId id, Func<TId,T> load) 

    { 

        m_Id = id; 

        Load = load; 

    } 

 

 

    protected override T Data 

    { 

        get 

        { 

            var data = (T)m_Data.Target; 

            if (data == null) 

                m_Data.Target = data = Load(m_Id); 

            return data; 

        } 

    } 

} 

 

The idea is that the garbage collector will clean up the live references when they are not needed 

anymore. 

You can try this in the demo program by clicking on the “scenario 2” button. Performance will be 

roughly the same, but after garbage collection (which is periodically forced by the demo) the live 

instances will remain at 0. This is an interesting observation: once an ItemsControl has shown a row, 

the item data is completely discarded. This is fortunate for us, since this behavior enables our solutions 

to work! 

So what’s the price to pay in this scenario? Let’s see: we’re using weak references. We should not 

confuse this with caching: caching implies policy, and there is no controllable policy here. Exactly which 

weak references will get garbage collected is the decision of the GC (garbage collector). We should not 

make any assumptions about the factors the garbage collector takes into account to make that 

selection. 

This needs to be mentioned explicitly, because I’ve seen many projects using weak references as the 

cornerstone for some kind of caching, based on the mistaken assumption that the garbage collector will 

use LRU (Least Recently Used) or LFU (Least Frequently Used) or some other cache-friendly strategy to 

select candidates for collecting. This is not true. 

And this brings us back to our price to pay: to sort 100,000 weak-referenced elements will take a very, 

very long time. If you’re working on battery power, make sure you have a full charge. If, during the 

sorting process, you place a breakpoint on: 



m_Data.Target = data = Load(m_Id); 

… you will notice it will be hit much more than 100,000 times, even if you have ample memory.  This is a 

sign that the GC collects items on its own terms, completely oblivious of the fact that the sorting 

algorithm will need O(nlogn) comparison operations and that it would be better for all instances to 

remain in memory for that time. Any half-decent caching policy would handle this correctly. 

There’s little known about the GC other than the fact that it is generational. My educated guess would 

be that most of the weakly-referenced instances are short-lived enough to remain in Gen0, and never 

promoted to older generations. When Gen0 is full, these instances are collected even though the sorting 

algorithm will need them again soon. But that’s just a guess. 

We’ll see how to “improve” the sorting process in scenario 4.  But there’s another issue we can handle 

right now. Both our solutions in scenarios 1 and 2 suffer from the same problem: they block the entire 

thread while waiting for their instance to be available. This can be illustrated in the demo application by 

trying a creation overhead of 500ms, instead of 1ms.  The creation time won’t go up, but you will need 

to wait about 5 seconds before the ListView is completely shown. Scrolling performance will be 

sluggish. Fortunately, we have deferred scrolling enabled on the ListView. If we didn’t it would be 

almost impossible to scroll to the end of the ListView using the scrollbar thumb. This is one of those 

cases where deferred scrolling not only improves perceived performance, but also improves actual 

performance.  

Time to introduce asynchronous loading! 

Scenario 3:  Loading asynchronously with AsyncDa taRef<TId, T> 

We can use the fact that Func<TId, T> denotes a delegate, and we can call delegates asynchronously. 

The code is as follows: 

public class AsyncDataRef<TId, T> : DataRefBase<T> where T : class 

{ 

    private readonly TId m_Id; 

    private int m_Loading; 

    private readonly Func<TId, T> Load; 

    private volatile T m_Data; 

 

    public AsyncDataRef(TId id, Func<TId, T> load) 

    { 

        m_Id = id; 

        Load = load; 

    } 

 

    protected override T Data 

    { 

        get 

        { 

            if (m_Data != null) 

                return m_Data; 

            if (Interlocked.Increment(ref m_Loading) == 1) 

                if (m_Data == null) 



                    Load.BeginInvoke(m_Id, AsyncLoadCallback, null); 

                else 

                    Interlocked.Decrement(ref m_Loading); 

            else 

                Interlocked.Decrement(ref m_Loading); 

            return m_Data; 

        } 

    } 

 

 

    private void AsyncLoadCallback(IAsyncResult ar) 

    { 

        m_Data = Load.EndInvoke(ar); 

        Interlocked.Decrement(ref m_Loading); 

        // when the object is loaded, signal that all the properties 

have changed 

        NotifyAllPropertiesChanged(); 

    } 

} 

 

Two things are worth mentioning about this implementation. 

First, asynchronous loading means that we cannot guarantee that the instance will be immediately 

available. In that case, we return null. Now these strange tests for null in our base class should make 

sense: while the instance is loading, the property value returned is always null. Once the instance is 

available, we need to signal to the binding engine it needs to reevaluate the properties. Fortunately, our 

base type implements INotifyPropertyChanged, and contains a method I haven’t mentioned until 

now: 

protected void NotifyAllPropertiesChanged() 

{ 

    foreach (DataRefPropertyDescriptor propertyDescriptor in 

PropertyDescriptorCollection) 

        NotifyPropertyChanged(propertyDescriptor); 

} 

 

This does nothing more than call NotifyPropertyChanged for all the properties, and will therefore 

trigger a reevaluation of all the instances’ bindings.  

The second thing worth mentioning is that we need to check if a call to Data comes in while the 

instance is still loading. If we called BeginInvoke on each occasion, we would load an instance multiple 

times. This hurts performance. The code explicitly checks if a call to Load is in progress and if so, does 

not call the delegate again. The simplest solution I could come up with (remembering the need for a 

lightweight object) is using a reference count and Interlocked methods to change it atomically. 

You can try the demo program and click on the “scenario 3” button with 100,000 items and a creation 

overhead of 500ms. It’s quite fun to watch the ListView responding immediately to your scrolling 

command, but the content itself will appear incrementally (and in random order).  



Once the excitement subsides, we need to pay up. What are the shortcomings of this solution? 

One issue is the fact that when a property value is not available, we return null. That’s OK for the WPF 

binding engine when binding simple properties, but may not be the correct behavior in more complex 

scenarios. There’s no simple solution. One workaround would be to define a special static instance of T, 

(whose properties are properly initialized) which is returned while the real instance is loading.  

Another issue is sorting: sorting will never work reliably.  Sorting needs correct property values for 

comparing items. However, because we are loading asynchronously, some of these values may be null 

when the algorithm executes the comparison. Although we do implement INotifyPropertyChanged, 

the sorting algorithm used inside the .NET framework doesn’t recompare items when their property 

values change. In fact, it would be quite a challenge to design a sort algorithm that takes property value 

changes into account while sorting (with minimal comparisons, of course).  This is left as an exercise for 

the reader. 

If you’re feeling adventurous, you may combine the previous 2 loading techniques to create a 

AsyncWeakDataRef<TId,T> (or a WeakAsyncDataRef<TId, T>), which loads the instance asynchronously 

and keeps a weak reference to it. The combination is simple and will not be discussed here. 

If you followed me so far and looked at the demo application, you know I still owe you one scenario. But 

before clicking on that “Scenario 4” button, we have some sleuthing to do. Read on. 

Virtualizing item collections 

Up till now, all our solutions have one thing in common: they virtualize the item, not the item collection. 

All the scenarios described thus far still create a list containing 100,000 objects. The improvements rely 

on the fact that we created lightweight objects instead of “real” ones, and delayed loading the “real” 

objects until they were was actually needed.   

But this also meant that for 12 items that were actually in use, the other 99,988 DataRefBase<T> 

items just sit there. They are only needed when their row scrolls into view, or during sorting. Is this 

really necessary?  

Before being capable of answering that question, I needed a little refresher about collection binding, 

which I would like to share here. Remember that WPF never binds directly to a collection, but to a view. 

In our case, the view can be obtained by calling: 

CollectionViewSource.GetDefaultView(TheView.ItemsSource) 

The return value is a type implementing ICollectionView. In all the scenarios above, the actual type 

is ListCollectionView. Don’t bother looking it up in the online help: the type is internal and 

therefore undocumented. It is chosen by GetDefaultView because our ItemsSource is bound to a 

List<T>, and List<T> (despite being a modern generic class) implements the untyped collection 

interface System.Collections.IList. This tells CollectionViewSource to use 

ListCollectionView. 



Tracing through all the mechanics of item sources and views yielded key insight #2: ItemsControl’s 

access patterns for its item source (actually, its view) is highly predictable.  All it needs is a count of the 

total number of items and “slice” of the actual items. This slice roughly starts at the index of the first 

visible item, and ends at the last visible item. 

Armed with this knowledge, my first attempt at list virtualization was simply to implement a “virtual” 

variant of List<T>. I reasoned that, because I was also implementing IList, a ListCollectionView 

instance would be created automatically and I wouldn’t have to do anything else.  I was right… 

unfortunately that didn’t help performance a bit. 

You see, one of the purposes in the life of a view is to leave the original source collection alone. As soon 

as you’re trying to sort, ListCollectionView creates a copy of your ItemsSource and sorts that 

internal list instead, thereby defeating the purpose of a virtual list: we still end up with a 100,000 object 

collection in memory. 

This means that any “true” collection virtualization should implement both a virtual list as an associated 

(virtual) view, and somehow convince to CollectionViewSource to pick the latter. It also means that 

both our list and our view will share much of the same functionality since they will both be virtualized. In 

fact, we can define a common base type that will be used by both. Say hi to VirtualListBase<T>. 

Hello VirtualListBase<T> 

The base type for both our virtual list and matching view is defined as follows: 

public abstract class VirtualListBase<T> :  

    IList<DataRefBase<T>>,  

    IList,  

    IItemProperties,  

    INotifyPropertyChanged,  

    INotifyCollectionChanged where T : class 

{ 

 … 

         protected abstract int InternalLoad(T[] data, int startIndex); 

 … 

} 

 

The complete implementation can be found in the article’s code. We discuss only the highlights here. 

To make our base type usable in both typed and untyped scenarios, it implements both variants of 

IList.  Furthermore: 

- IItemProperties is implemented to provide information about the properties available on 

the items of the collection. Since these are in fact properties of T, we can obtain this 

information easily from DataRefBase<T>.PropertyDescriptorCollection. and 

repackage it as a read-only collection of ItemPropertyInfos. 



- INotifyPropertyChanged and INotifyCollectionChanged are implemented to track 

collection changes. This may seem strange for a read-only scenario, but as we shall see shortly, 

it makes very much sense in many cases. 

When deriving from VirtualListBase<T>, the only thing you need to provide is a method: 

int InternalLoad(T[] data, int startIndex) 

Remember that we defined a Data property for DataRefBase<T>, to load a single object. Since we are 

now dealing with a collection, we need a method to load a “slice” (or “page”) of that collection. The slice 

starts at index startIndex in the “real” collection, and continues till startIndex + data.Length 

- 1 or until the end of the collection, whichever comes first. The method returns the total number of 

items in the “real” collection.  

While it’s impossible to make an exhaustive study of all possible ways of obtaining a list of items, most 

business layers or search services have a way of returning the total number of results, and a “slice” of 

these results. Web application developers have been using this method for list pagination.  We just 

reuse the same functionality, but expose it to the outside world as a continuous list of items. 

Of course, the content of this slice depends on the order of the results and (possibly) a filter, which are 

usually specified as parameters. This is of no concern to VirtualListBase<T> and derived types will 

have to handle this in some way or another. We’ll see how in a moment. 

Why do we always return the total number of items in the “real” collection? Isn’t once enough? Suppose 

our search service is stateless and performs the search every time a slice of the results is requested (for 

some search engines like Lucene.net, this is actually the preferred mode of operation). If other users are 

modifying the underlying data, the resulting slice may change.  Ignoring those changes is bad. Tracking 

them exhaustively is either very expensive or very complex. We can compromise and check for 

differences in list size: if the return value of InternalLoad is different from the last one, we assume 

the underlying “real” collection has changed and signal the event to interested parties (via 

INotifyCollectionChanged and INotifyCollectionChanged). If there’s no difference in count, 

the list is assumed to be unchanged. This assumption can be wrong, but the risk is somewhat mitigated 

because we don’t keep items in memory for too long (they’re virtual!), and their correct value will be 

obtained when they are retrieved again. 

As can be derived from the interfaces, the actual objects the collection holds derive from 

DataRefBase<T>. This is the concrete implementation: 

private class CachedDataRef : DataRefBase<T> 

{ 

    public readonly VirtualListBase<T> List; 

    public readonly int Index; 

 

    public CachedDataRef(int index, VirtualListBase<T> list) 

    { 

        Index = index; 

        List = list; 



    } 

 

    protected override T Data 

    { 

        get { return List.LoadData(Index); } 

    } 

 

    public override int GetHashCode() 

    { 

        return Index ^ List.GetHashCode(); 

    } 

 

    public override bool Equals(object obj) 

    { 

        CachedDataRef other = obj as CachedDataRef; 

        return other != null && Index == other.Index && List == 

other.List; 

    } 

} 

 

The actual instance is loaded by calling VirtualListBase<T>.LoadData(Index).  This method 

either finds the instance in a local cache, or ends up calling InternalLoad to bring the slice it resides 

on in cache memory. The local cache replacement policy is LRU, simulated by a move-to-front method. 

You will find the implementation details in the article code. 

Equality and hash code are redefined to make sure we’re able to compare items without forcing their 

instances to load. This proved helpful when using virtual collections in algorithms that compare items at 

some point. 

Implementing VirtualList<T> 

With VirtualListBase<T> as base type doing most of the heavy lifting, our actual VirtualList<T> 

implementation is very simple. Here is the complete code: 

public class VirtualList<T> : VirtualListBase<T>, 

  ICollectionViewFactory where T : class 

{ 

    internal readonly Func<SortDescriptionCollection, 

Predicate<object>, T[], int, int> Load; 

 

    public VirtualList(Func<SortDescriptionCollection, 

Predicate<object>, T[], int, int> load, int numCacheBlocks, int 

cacheBlockLength) 

        : base(numCacheBlocks, cacheBlockLength) 

    { 

        Load = load; 

    } 

 

    public VirtualList(Func<SortDescriptionCollection, 

Predicate<object>, T[], int, int> load) 

        : base(5, 200) 

    { 



        Load = load; 

    } 

 

    protected override int InternalLoad(T[] data, int startIndex) 

    { 

        return Load(null, null, data, startIndex); 

    } 

 

    #region ICollectionViewFactory Members 

 

    public ICollectionView CreateView() 

    { 

        return new VirtualListCollectionView<T>(this); 

    } 

 

    #endregion 

} 

 

 The first thing you’ll notice is the implementation of ICollectionViewFactory. This is a signal to 

CollectionViewSource.GetDefaultView that we will be providing our own collection view. 

The other thing you’ll notice is that, just like in the DataRef<TId, T> case, I’ve defined a delegate to 

load the items. The definition needed to be flexible enough to support sorting and filter predicates. 

Rather than defining my own parameter structure, I’ve reused the existing 

SortDescriptionCollection and Predicate<object> definitions as parameters, which will be 

directly usable by the associated view. This is a design decision motivated by the fact that I avoid adding 

needless layers of complexity for article code. Feel free to make other choices, as long as you remember 

that the view’s sort descriptions and filter predicates should somehow be passed to your method that 

loads the “real” items, if they are needed at all. 

The demo application contains a sample implementation, which takes into account the sort descriptor, 

but not the filter: 

private int Load(SortDescriptionCollection sortDescriptions, 

Predicate<object> filter, Person[] person, int startIndex) 

{ 

    Thread.Sleep(Math.Max(1, m_Random.Next(m_CreationOverhead)));    // 

simulate expensive operation 

    bool isDescending = sortDescriptions != null && 

sortDescriptions.Count > 0 && sortDescriptions[0].Direction == 

ListSortDirection.Descending; 

    for (int i = 0; startIndex < m_ItemCount && i < person.Length; ++i, 

++startIndex) 

        person[i] = new Person(isDescending ? m_ItemCount - startIndex 

- 1 : startIndex); 

    return m_ItemCount; 

} 

 

Note that we sort “by id”, which is different from the simple property sort used in the default 
ListCollectionView. 



I will not insult the intelligence of the reader by pointing out that this is just an example of sorting. Feel 

free to plug in your own data shaping operations. 

 

Scenario 4: VirtualListView<T> in action 

The implementation of the virtual view associated with VirtualList<T> is more involved because of 

the complexity of the ICollectionView interface.  I only show selected parts of the constructor and 

the implementation of InternalLoad here, you can pick up the other sordid details from the article 

code: 

class VirtualListCollectionView<T> :  

VirtualListBase<T>, ICollectionView where T : class 

{ 

private readonly VirtualList<T> m_SourceCollection; 

private readonly Func<SortDescriptionCollection, 

Predicate<object>, T[], int, int> Load; 

 

    … 

    public VirtualListCollectionView(VirtualList<T> list) 

        : base(…) 

    { 

        Load = list.Load; 

        m_SourceCollection = list; 

        … 

    } 

 

    … 

    protected override int InternalLoad(T[] data, int startIndex) 

    { 

        return Load(m_SortDescriptionCollection, m_Filter, data, 

startIndex); 

    } 

 

    … 

} 

 

The important thing to note here are that our view just uses the original list’s Load delegate. The list 

itself is never touched. 

It should come as no surprise that the view supports both sorting and filtering. 

What about grouping? As far as performance is concerned, grouping is a party pooper, even if you can 

do it efficiently in your virtual view. If ItemsControl detects a GroupStyle, it will silently change the 

items panel to a StackPanel, even if you explicitly set 

VirtualizingStackPanel.IsVirtualizing="True", effectively turning off UI virtualization 

behind your back. This causes all your item containers to be realized, and performance suffers 

accordingly. Data virtualization will not help here. The problem was present on the September 2006 CTP 

of WPF, and persists until today. The related connect bug 123998, opened on April 4, 2006 (see 

https://connect.microsoft.com/feedback/ViewFeedback.aspx?FeedbackID=123998&SiteID=212&wa=wsi

https://connect.microsoft.com/feedback/ViewFeedback.aspx?FeedbackID=123998&SiteID=212&wa=wsignin1.0


gnin1.0) was marked closed (postponed). The only workaround I know of is to avoid using GroupStyle 

and use your own styles to simulate grouping. However, making this work will when nesting group is 

difficult.  At this time, it looks like that the problem will not be solved in WPF 4.0 either. Worse: WPF 4.0 

will not contain any solution for UI virtualization with grouping. 

So, no, the virtual view doesn’t do grouping. Add this to the price to pay. 

But now you can click on that scenario 4 button. Go ahead and create 1,000,000 items. Scroll, sort, do 

whatever you like. Be amazed at the response time. Just keep in mind the limitations I’ve discussed! 

Virtualization beyond WPF 

The previous virtualization techniques have been discussed in the context of WPF. However, the actual 

techniques are independent of WPF and can be used anywhere you like. After all, the only thing you 

have to do is to deal with ICustomTypeDescriptor directly.  The code will be tedious to write, but it 

will work. 

If you hate tediousness (who doesn’t?) and want to use the above virtualization tricks outside WPF, you 

should keep an eye on the upcoming C# 4.0 and its support for dynamic objects (IDynamicObject).  A 

DataRefBase<T> object can be wrapped in a dynamic object, which will expose the properties in an 

easy “object.property” format you can write directly, and let the compiler figure out the details. If you 

have the Visual Studio 2010 CTP, make sure to add the implementation of the 

System.Dynamic.DynamicObject type (which can be found at 

http://www.gotnet.biz/Blog/post/The-Missing-SystemDynamicDynamicObject-Class.aspx ). The 

implementation of such a wrapper is very simple: 

public class DynamicDataRef<T> : DynamicObject 

{ 

    private readonly PropertyDescriptorCollection 

m_PropertyDescriptorCollection; 

    private readonly DataRefBase<T> m_DataRef; 

 

    public DynamicDataRef(DataRefBase<T> dataRef) 

    { 

        m_DataRef = dataRef; 

        m_PropertyDescriptorCollection = dataRef.GetProperties(); 

    } 

 

    private PropertyDescriptor GetPropDescriptor(string name) 

    { 

        var propDescriptor = m_PropertyDescriptorCollection[name]; 

        if (propDescriptor == null) 

            throw new ArgumentException(String.Format("Property {0} not 

found", name)); 

        return propDescriptor; 

    } 

 

    public override object GetMember(GetMemberAction action) 

    { 

        return GetPropDescriptor(action.Name).GetValue(m_DataRef); 



    } 

 

    public override void SetMember(SetMemberAction action, object 

value) 

    { 

        GetPropDescriptor(action.Name).SetValue(m_DataRef, value); 

    } 

} 

 

If you don’t like wrappers and don’t mind your code being directly dependent on .NET 4.0, you can 

simply make DataRefBase<T> inherit from DynamicObject directly.  

Keep in mind, however, that dynamic objects are no substitute for ICustomTypeDescriptor: unless 

things change between the CTP and the final release of .NET 4.0, you still need the latter interface for all 

existing data binding scenarios. 

 


